对于地磅防遥控发射指令时用的射频电磁波的解析

2016-04-11 22:07:04

对于地磅防遥控发射指令时用的射频电磁波的解析

有去了解过地磅防遥控器的人都知道,普通固定频的地磅遥控器,就是一种借助无线电遥控技术,利用地磅称重关键部件技术上的缺陷,按照人们的主观意愿,改变远端地磅称重结果的装置。它是一种成对的装置,由无线电发射器和无线电接收器两部分组成。无线电发射器,完成控制各种指令的编码与传送,似于开关;无线电接收器,完成对发射器指令的解码,并根据指令的要求完成各种控制功能。

而大家知道它靠的什么来发射无线电指令的吗?普通固定频地磅遥控器发射的就是一种电磁波,具有较高的隐蔽性。今天跟大家解析下,地磅遥控器发射指令时用的是射频电磁波,何为射频电磁波呢?射频简称RF,即射频电流,就是一种高频交变电磁波。

地磅 电子秤 防骗秤神器 地秤防遥控屏蔽器 电子秤防干扰屏蔽器地磅防遥控 地磅防控仪 地磅防干扰 地磅防遥控检测仪 电子秤防遥控屏蔽器  电子秤屏蔽器blob.png

射频的定义:

射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围从300KHz~300GHz之间。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。

在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100kHz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波称为射频;射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

工作原理:

系统的基本工作流程是:阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。

在耦合方式(电感-电磁)、通信流程(FDX、HDX、SEQ)、从射频卡到阅读器的数据传输方法(负载调制、反向散射、高次谐波)以及频率范围等方面,不同的非接触传输方法有根本的区别,但所有的阅读器在功能原理上,以及由此决定的设计构造上都很相似,所有阅读器均可简化为高频接口和控制单元两个基本模块。高频接口包含发送器和接收器,其功能包括:产生高频发射功率以启动射频卡并提供能量;对发射信号进行调制,用于将数据传送给射频卡;接收并解调来自射频卡的高频信号。不同射频识别系统的高频接口设计具有一些差异,电感耦合系统的高频接

阅读器的控制单元的功能包括:与应用系统软件进行通信,并执行应用系统软件发来的命令;控制与射频卡的通信过程(主-从原则);信号的编解码。对一些特殊的系统还有执行反碰撞算法,对射频卡与阅读器间要传送的数据进行加密和解密,以及进行射频卡和阅读器间的身份验证等附加功能。

射频识别系统的读写距离是一个很关键的参数。长距离射频识别系统的价格还很贵,因此寻找提高其读写距离的方法很重要。影响射频卡读写距离的因素包括天线工作频率、阅读器的RF输出功率、阅读器的接收灵敏度、射频卡的功耗、天线及谐振电路的Q值、天线方向、阅读器和射频卡的耦合度,以及射频卡本身获得的能量及发送信息的能量等。大多数系统的读取距离和写入距离是不同的,写入距离大约是读取距离的40%~80%。

频率介绍

在整个射频通信中,主要包含以下几种频率:传输频率、接收频率、中频和基带频率。基带频率是用来调制数据的信号频率。而真正的传输频率则比基带频率高很多,一般的频谱范围是500MHz到38GHz,数据信号也是在此高频下进行传输的。一般来说,射频系统具有非常强大的传输调制信号的功能,即使在有干扰信号和阻断信号 的情况下,该系统也可以做到以最高的质量发送并且以最好的灵敏度接收调制信号。阻断信号主要有两种:带内阻断信号和带外阻断信号。带外阻断信号是指分布在信号频谱之外的无关信号,例如由其它无线传输技术产生的数据信号。带内阻断信号则分布在我们感兴趣的信号频谱之内,例如由相同的无线传输技术在其它终端产生的数据信号。对于无线通信而言,要成功地实现射频接收功能,必须要过滤掉这两种阻断信号。 中频多被用来作为传输/接受频率和基带频率的过渡,而这种传输方式正是超外差结构的基础。一般而言,带外阻断信号可以被天线自带的滤波器过滤掉。而中频的存在使我们有机会在信号被混合到基带频率并做数字处理之前将带内阻断信号滤除。另一方面,在发送端,中频常被用来滤除所有从基带转换到中频这个过程中可能产生的伪数据和噪声。

在射频通信中应用的第三种结构是直接转换结构。由于直接转换结构直接将基带信号和射频信号在同一进程中混合在一起,这使得该结构的信号链路最为简单,它所需要的元器件最少。与其它两种结构不同的是,它将不需要中频处理和声表面波(SAW)滤波器。

直接转换结构的主要优点是:价格便宜、小型化、低功耗,并且没有中频转换相关器件。这些优点使得这种结构非常适合在低功耗、便携式终端的应用。尽管如此,一些高性能器件的使用为直接转换结构应用在高端市场打开了方便之门。事实上,正是这些高性能器件的使用,使得直接转换结构受到越来越多的关注。

由于在直接转换结构中没有中频处理单元,带内阻断信号的功率将直接传递到混频器和模数转换器(如果信号链路上含有模数转换器)。低噪声的混频器将确保弱信号不会被噪声和阻断信号所淹没。另外,由于混频器具有高的输出摆幅和低的失真,阻断信号既不会过驱动整个系统也不会调制到我们需要的载波信号上。

对于基带超外差接收器,如果在本机锁相环和射频输入之间存在泄漏通路,就一定会产生直流失调。对于和全球移动通信系统类似的支持跳频的一些射频应用来说,频率的跳变将导致本机锁相环路漏电的改变,并最终导致整个系统的直流失调的跳变。如果要纠正它,必须在系统中引入一个直流失调的补偿环路。尽管如此,在那些不需要跳频的应用中,本机锁相环的漏电是不变的,因此动态直流失调的补偿意义不大。


标签: 地磅防遥控